ORCID

0000-0001-8131-4762

Contributor 1

Marc Verheul

Contributor 2

Karen M. Tkaczyk

Abstract

Beneficial use of dredged sediments, either in harbours or waterways, is based on their potential as alternative resources. Such sediments can be considered as bulk materials for industrial needs, which is predicated on their current waste status or meeting end-of-waste constraints. They also can be an integral part of beneficial use projects using sediments as a bulk component, including civil engineering and landscaping. This is particularly important for beneficial use projects focusing on climate change effects mitigation, such as flood protection works, coastline defence or littoral urban areas redevelopment. When dredged sediment is used as a bulk material, its acceptability is based on an assumed homogeneity of its properties. On-site analyses allow pre-dredging detailed mapping at a denser scale than laboratory ones; monitoring dredgings during operations and during processing; and continuous control of their properties at the implementation site. This is currently possible only for a selection of inorganic analytes. When dredgings are part of a larger beneficial use project, on-site analyses facilitate first the baseline survey and the sediment source characterisation. Continuous monitoring of the sediment load allows a fast detection of contamination hot spots and their adequate management. Site survey via on-site instruments allow end users and communities to check themselves the contamination level, hence acceptability is better. On-site dredged sediment analyses monitor both building properties and environmental compliance; soil and sediment analyses at receiving sites; surface and groundwater, either for impact assessment or for monitoring works. On-site instruments provide immediate results and allow dynamic or adaptive sampling strategies, as well as allowing operational decisions in real time. Confirmation by laboratory analyses is required for validation, but on-site sample screening for laboratory analyses improves their efficiency. The present paper was developed on the basis of an earlier presentation, which it developed and updated extensively.

Disciplines

Civil and Environmental Engineering

DOI

10.3390/land11020274

Full Publication Date

11-2-2022

Publication Details

Land

Publisher

MDPI

Funder Name 1

European Union (Regional Policy Directorate, InterReg programs FWVl and NWE, projects VALSE and SURICATES, grants 3.5.161 and NWE 462)

Funder Name 2

The French Ministry for Research

Funder Name 3

The French North Pas de Calais and Belgian Walloon regions

Resource Type

journal article

Resource Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access Rights

open access

Open Access Route

Gold Open Access

License Condition

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Alternative Identifier

https://www.mdpi.com/2073-445X/11/2/274

Share

COinS