ORCID
0000-0003-4463-9503
Abstract
Monitoring of groundwater (GW) resources in coastal areas is vital for human needs, agriculture, ecosystems, securing water supply, biodiversity, and environmental sustainability. Although the utilization of water quality index (WQI) models has proven effective in monitoring GW resources, it has faced substantial criticism due to its inconsistent outcomes, prompting the need for more reliable assessment methods. Therefore, this study addressed this concern by employing the data-driven root mean squared (RMS) models to evaluate groundwater quality (GWQ) in the coastal Bhola district near the Bay of Bengal, Bangladesh. To enhance the reliability of the RMS-WQI model, the research incorporated the extreme gradient boosting (XGBoost) machine learning (ML) algorithm. For the assessment of GWQ, the study utilized eleven crucial indicators, including turbidity (TURB), electric conductivity (EC), pH, total dissolved solids (TDS), nitrate (NO3−), ammonium (NH4+), sodium (Na), potassium (K), magnesium (Mg), calcium (Ca), and iron (Fe). In terms of the GW indicators, concentration of K, Ca and Mg exceeded the guideline limit in the collected GW samples. The computed RMS-WQI scores ranged from 54.3 to 72.1, with an average of 65.2, categorizing all sampling sites' GWQ as “fair.” In terms of model reliability, XGBoost demonstrated exceptional sensitivity (R2 = 0.97) in predicting GWQ accurately. Furthermore, the RMS-WQI model exhibited minimal uncertainty (< 1 %) in predicting WQI scores. These findings implied the efficacy of the RMS-WQI model in accurately assessing GWQ in coastal areas, that would ultimately assist regional environmental managers and strategic planners for effective monitoring and sustainable management of coastal GW resources.
Disciplines
Civil and Environmental Engineering
DOI
10.1016/j.heliyon.2024.e33082
Full Publication Date
24-6-2024
Publisher
Elsevier
Resource Type
journal article
Resource Version
http://purl.org/coar/version/c_970fb48d4fbd8a85
Access Rights
open access
Open Access Route
Gold Open Access
License Condition
This work is licensed under a Creative Commons Attribution 4.0 International License.
Alternative Identifier
https://www.sciencedirect.com/science/article/pii/S2405844024091138?via%3Dihub#ack0010
Recommended Citation
Uddin, Md Galal; Shah Porun Rana, M M.; Diganta, Mir Talas Mahammad; Bamal, Apoorva; Sajib, Abdul Majed; Abioui, Mohamed; Shaibur, Molla Rahman; Ashekuzzaman, S M.; Nikoo, Mohammad Reza; Rahman, Azizur; Moniruzzaman, Md; and Olbert, Agnieszka I., "Enhancing groundwater quality assessment in coastal area: A hybrid modeling approach" (2024). Publications [online].
Available at: https://doi.org/10.1016/j.heliyon.2024.e33082
Publication Details
Heliyon